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Even for processes with only a few gas species involved the detailed description of plasma-assisted
conversion processes in gas mixtures requires a large amount of processes to be taken into account
and a large number of neutral and charged particles must be considered. In addition, setting
up the corresponding reaction kinetics model needs the knowledge of the rate coefficients and
their temperature dependence for all possible reactions between those species. Reduced reaction
networks offer a simplified and pragmatic way to obtain an overall reaction kinetics model, already
useful for the analysis of experimental data even if not all details of chemistry can be covered. In
this paper we present a derivation of a data driven reduced model for plasma-assisted conversion of
methane in an helium environment. By consideration of a small number of elementary reactions,
a simple model is set up. Experimental data are analyzed by a genetic algorithm that provides
best-fit approximations for the open parameters of the model. In a further step non-relevant
parameters of the model are identified and a further model reduction is achieved. The data driven
analysis of methane conversion serves as an illustrative example of the proposed method. The
parameters and reaction channels found are compared with known results from the literature.
The method is described in detail. The main goal of this work is to present the potential of this
data driven method for a simplified and pragmatic modeling in the increasingly important field
of plasma-assisted catalytic processes.
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I. INTRODUCTION

Reaction kinetic models allow far-reaching predictions
of complex chemical processes. The description on the
basis of reaction kinetics has a tradition of decades and
an enormous amount of literature exists on this topic and
special applications. A starting point for the reader to
get more information on this might be Refs. [1; 2] and
the references therein. Still, the determination of rate
coefficients is in the center of attention when creating
reaction kinetic models. Although several quantum me-
chanical approaches allow for a number of conclusions,
it is not always possible to build a complete reaction ki-
netic model completely on the basis of ab initio theories.
Furthermore, extensive statistical analysis of experimen-
tal data is required to support or supplement theories.
This is mostly complicated by large numbers of species
and reactions involved. The present work discusses an
approach for data driven analysis of experimental data
of plasma-assisted processes, which allows to derive re-
duced models in a simple way. When selecting a data
evaluation method it is essential to know whether a de-
tailed knowledge of the species involved is available or
whether only a few of the reactants and products involved
can be observed. Furthermore, it makes a decisive differ-
ence whether a time series of concentrations of individual
species is available or only stationary states can be mea-
sured. In order to cope with these difficulties, we focus
on the application of genetic algorithms to analyze the
experimental data. The flexibility and robustness of the
method is reflected by an enormous number of publica-

tions from various scientific disciplines on the application
and concrete design of genetic algorithms. Useful refer-
ences on the basic ideas and practical implementation
are given by Refs. [3–7]. Examples of applications in the
field of reaction kinetics can be found in Refs. [7–16]. Es-
pecially Lapene et al. [16] give a very good overview of
applications and methods in chemical physics. These ref-
erences are given to name just a few and without claiming
to be exhaustive. The particular details of the method
depend on the problem at hand. In the present data
driven analysis we face the problem of being able to track
only a small number of species in the plasma-assisted
conversion of methane, but with a rather good time res-
olution. In addition, data are available from different ex-
periments in which individual reaction parameters were
varied. The goal is, on the one hand, to find a suitable set
of only a few reactions to describe the conversion process,
and on the other hand, to find the appropriate rate coef-
ficients. Both can be achieved by the genetic algorithm
that is presented. In Sec. II the concrete experiment and
the data available are described. Then, in Sec. III the de-
tails of the method are presented, i.e. how the reaction
kinetic model is set up and how the genetic algorithm
is constructed. Sec. IV contains numerical results and
Sec. V a discussion of the possible conclusions for further
steps in model refinement. In Sec. VI the main results
are summarized.
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II. EXPERIMENTS ON PLASMA-BASED TREATMENT OF
A METHANE CONTAINING GAS STREAM

Recently, experiments were conducted to study a pre-
treating of hydrocarbon exhaust gas using a plasma pro-
cess [17]. The intent was to study a process in which
CH4 is oxidized into CO and CO2 while simultaneously
consuming existing O2, therefore providing a kind of gas
cleaning. For this purpose a radiofrequency (RF) atmo-
spheric pressure plasma was generated in a plug flow
reactor and various gas mixtures of O2, CH4 and He
were fed into it. Helium was the dominant species, so
that O2 and CH4 were only present in high dilution.
Infrared spectroscopy was used to analyse the plasma
conversion. This high dilution has been chosen to keep
the number of relevant species small, as secondary re-
actions/polymerizations can be expected to be unimpor-
tant. By this means it was possible to monitor CH4 as
well as the reaction products CO, CO2 and H2O. De-
tails on the experimental setup used and discussion of
the experimental data can be found in [17] and references
therein. In this paper, however, the aspect of data anal-
ysis will be in the foreground and the measured data will
be taken as given and not further questioned. The spe-
cial characteristics of the available data can be described
as follows:

• Complex plasma-assisted processes involving several
species can be adjusted by well-defined initial condi-
tions and power input.

• Well equipped experimental arrangements allow the
measurement of time courses of individual species.

• Despite the wealth of information obtained by varying
mixing ratios and plasma power, many species and
parameter ranges are not experimentally accessible.

From this general point of view, the evaluation of existing
experimental data resembles a very common situation,
which is why the method discussed here may also be of
importance for a number of other experiments, e. g. in
plasma-assisted catalysis, where the surface species on
the catalyst are usually not easy to access. The concrete
data to be analyzed in this work are partial time traces
of CH4, CO, CO2 and H2O which have been compiled
in various RF discharges where the plasma power and
the gas mixture have been varied. These data are sup-
plemented by measurements of concentrations at only a
single specific point in time, but obtained for several val-
ues of plasma power and initial gas composition. In total
a number of 269 data points are available from the cam-
paign reported in [17] containing scattered data of the
concentrations of CH4, CO, CO2 and H2O at different
times, plasma power and feed gas admixture.

III. MODEL DISCOVERY METHOD

A. Selection of the reaction network

First, a selection of the reactants and products to be
considered is made. From the combinatorial possibili-
ties of all unimolecular and bimolecular reactions, those
processes are selected that are stoichiometrically possi-
ble. In our example, a reaction network is built up for
a number of Ns = 9 species Xs, s = 1, . . . , Ns, namely
CH4, O2, O, CO2, CO, H2O, C, H2 and e−. According
to the stoichiometric selection rule a number of Nr = 42
reactions are possible which are listed in Tab. III.A. The
corresponding rate laws for the species densities [Xs] can
be written in the compact form

∂[Xs]

∂t
=

Nr∑
r=1

νs,r kr

Ns∏
p=1

[Xp]
ν′
p,r , s = 1, . . . , Ns (1)

The stoichiometric matrix is given by the components
νs,r and the rate coefficient for a particular reaction is
denoted by kr. Only a part of the densities [Xs] are ex-
perimentally accessible and at the beginning of the eval-
uation we do not make any assumptions about the rate
coefficients kr. Inspection of the reactions of Tab. III.A
shows that the species densities obey the conservation
laws

[e−] = const. (2)

2 [CH4] + [H2O] + [H2] = const. (3)

[CH4] + [CO2] + [CO] + [C] = const. (4)

2 [O2] + [O] + 2 [CO2] + [CO] + [H2O] = const. (5)

The conservation of electrons is due to the fact that it
is assumed that they participate in electron impact dis-
sociation only. It is to be noted that the combustion of
methane is a well-known system [18–21] with typically
very many species and reactions. Reaction pathways
have also been studied extensively for plasma-assisted
conversion including a large number of reactions and
species [22–26]. In our system, however, the dilution is
very high and the residence time is short. We therefore,
restrict ourselves to only primary reactions. Reactions
involving charged species such as ion molecule reactions
or electron ion recombination are neglected due to the
very low charge carrier density of 1011 cm−3 in compari-
son to the neutral reactive species densities of the order of
1017 cm−3. This model does not pretend to be complete,
but it exhibits important characteristics of the observed
processes. In the end, it represents a first and certainly
arbitrary step towards a pragmatic model that is to be
found here.
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No. Reaction No. Reaction
R1 CH4 −−→ C+H2 +H2 R22 O+CO −−→ O2 +C ×
R2 CO2 −−→ O+O+C × R23 CO+H2O −−→ CO2 +H2 F ×
R3 CO2 −−→ O2 +C × R24 CO+H2O −−→ O2 +C+H2 ×
R4 CO2 −−→ O+CO F × R25 CO+H2 −−→ H2O+C ×
R5 CO −−→ O+C × R26 O2 +C −−→ CO2 ×
R6 O2 −−→ O+O R27 O2 +C −−→ O+CO F ×
R7 H2O −−→ O+H2 × R28 O2 +H2 −−→ O+H2O F ×
R8 CH4 +O2 −−→ CO2 +H2 +H2 R29 O+O −−→ O2 ×
R9 CH4 +O2 −−→ CO+H2O+H2 R30 O+C −−→ CO ×
R10 CH4 +O2 −−→ H2O+H2O+C R31 O+H2O −−→ O2 +H2 ×
R11 CH4 +O −−→ CO+H2 +H2 × R32 O+H2 −−→ H2O ×
R12 CH4 +O −−→ H2O+C+H2 × R33 H2O+C −−→ CO+H2 ×
R13 CO2 +CO2 −−→ O2 +CO+CO × R34 H2O+H2O −−→ O2 +H2 +H2 ×
R14 O+CO2 −−→ O2 +CO × R35 CH4 + e− −−→ C+H2 +H2 + e− F ×
R15 CO2 +H2O −−→ O2 +CO+H2 × R36 CO2 + e− −−→ O+O+C+ e−

R16 CO2 +H2 −−→ CO+H2O × R37 CO2 + e− −−→ O2 +C+ e−

R17 CO2 +H2 −−→ O+H2O+C × R38 CO2 + e− −−→ O+CO+ e−

R18 CO+CO −−→ O2 +C+C × R39 CO+ e− −−→ O+C+ e−

R19 CO+CO −−→ CO2 +C × R40 O2 + e− −−→ O+O+ e− ×
R20 O2 +CO −−→ O+CO2 × R41 H2O+ e− −−→ O+H2 + e−

R21 O+CO −−→ CO2 F × R42 CO2 +C −−→ CO+CO ×

TABLE I List of reactions taken into account in the full reaction net. The symbol × labels reactions which are taken into
account in the constrained model. The symbol F marks the reactions that form the minimal model.

B. Genetic algorithm for extraction of rate coefficients

The goal of our numerical calculations is to find rate co-
efficients kr that bring the results of the integrated rate
equations of Eq. 1 in the best possible agreement with
the experimental data. This represents a minimization
problem where the difference between calculated densi-
ties and the experimental results should be minimized for
all investigated time points, plasma power and starting
conditions simultaneously. To solve this problem, we use
a genetic algorithm which considers a population of N
chromosomes which carry a number of M genes. The
chromosomes are represented by vectors yi, i = 1, . . . , N
with components yi,j , j = 1, . . . ,M . Each chromosome
yi is a candidate solution for the minimization problem
considered and the genes represent model parameters to
be optimized. In our case where rate coefficients are the
model parameters, the components yi,j are given by the
relations

ki,j = 10 yi,j (6)

This choice ensures the positivity of the rate coefficients
ki,j for any yi,j . The number of model parameters equals
the number of reaction rate coefficients, M = Nr, such
that ki,r is the ith candidate solution for the reaction
rate kr in the rate laws of Eq. 1. The fitness Fi of the
ith chromosome is defined by

Fi = exp (−fi/a) (7)

where a is an appropriate normalization constant and fi
is a positive definite functional representing the deviance
of our reaction kinetic model

fi =

Nc∑
q=1

wq (ciq − ĉq)2 (8)

Here, ĉq denotes a measured density of some observable
species at a particular time and for particular experimen-
tal conditions. The density ciq is the corresponding nu-
merical result obtained by integration of the rate laws of
Eq. 1 using the ith candidate solution ki,r, r = 1, . . . , Nr
for the rate coefficients. In total a number of Nc con-
straints (experimental data points) is used to define the
fitness functional. The factor wq is a weight that makes
it possible to assign greater importance to certain ex-
perimental points. For example, the choice of a weight
wq = m, where m is an integer, would be equivalent to
the m-fold repetition of an experiment, providing always
the same result. An accumulated probability function Pi
is introduced by

Pi =

i∑
j=1

Fj

N∑
j=1

Fj

, i = 1, . . . , N (9)

This means that if chromosome-indices i are picked
randomly via the rule Pi−1 < r ≤ Pi, with uniform
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random numbers 0 ≤ r ≤ 1, the resulting distribution of
indices reflects their fitness, i. e. more chromosomes with
high fitness are selected. The practical computation
then begins with a first guess for the rate coefficients
kr and the evolution to the next generation of chromo-
somes, i. e. a refinement of solutions, consists of the
following steps indicated by roman numerals I to V. The
populations yi, i = 1, . . . , N resulting from the modifica-
tions of a particular step are also labeled by (I), . . . , (IV).

Step I. Hierarchy
The chromosomes yi are sorted with respect to their
fitness values Fi and a resorted vector F (I)

i is constructed
following the ordering: F (I)

i ≥ F
(I)
i+1, i = 1, . . . , N − 1.

This re-ordering defines the intermediate population y
(I)
i .

Step II. Selection
In the selection step the lower half of the population
(the solutions with small fitness) is removed and the
upper half is cloned. For the resulting population of
chromosomes y

(II)
i an accumulated probability function

P
(II)
i is computed according to Eq. 9 for the fitness

distribution F
(II)
i . The selection can be expressed

formally by writing

y
(II)
2i−1 = y

(I)
i , y

(II)
2i = y

(I)
i , i = 1, . . . , N/2 (10)

Step III. Crossover
First, the two best fit chromosomes are copied into the
next generation of offsprings.

y
(III)
1 = y

(II)
1 , y

(III)
2 = y

(II)
2 (11)

To obtain further N−2 offsprings, pairs are picked out by
taking into account the fitness probability. However, the
first partner in the pairing process is always the chromo-
some with the best fitness y(II)

1 . The second partner y(II)
n

is chosen randomly according to the probability P
(II)
n ,

but inbreeding, i. e. n = 1 is avoided. Then a crossover
for a particular pair y

(II)
1 and y

(II)
n takes place with a

probability pc. The gene index m for crossover is chosen
randomly in the range 1, . . . ,M and offspings y(III)

2j−1 and
y
(III)
2j , j = 2, . . . , N/2, are obtained via the interpolating

crossover rule [7; 16]

y
(III)
2j−1,l = r y

(II)
1,l + (1− r) y(II)n,m (12)

y
(III)
2j,l = (1− r) y(II)1,l + r y(II)n,m (13)

The interpolation parameter is taken as r = 1 for l 6= m,
but for l = m it is sampled from a uniform distribution
on the interval [0,1]. Note, that the choice r = 0 for
l = m would result in a simple exchange crossover.

Step IV. Mutation

For each chromosome y
(III)
i , i = 2, . . . , N (again i = 1 is

excluded to keep the best fit chromosome), a mutation
takes place with a probability pm in a single gene. The
particular gene index m for mutation is chosen randomly
in the range 1,. . . ,M and the mutation is realized by an
incremental change of the component y(III)i,m [6; 16]

y
(IV)
i,m =


y
(III)
i,m + r∆

(
Hm − y(III)i,m

)
if r ≥ 0

y
(III)
i,m + r∆

(
y
(III)
i,m − Lm

)
if r < 0

(14)

The values of Hm and Lm denote prescribed upper and
lower bounds for the mth model parameter. A uniform
random number −1 ≤ r ≤ 1 and a prescribed increment
0 < ∆ ≤ 1 are used to compute the change in the gene.

Step V. Update
The resulting population y

(IV)
i is the new generation.

The assignment y
(IV)
i → yi completes one evolutionary

step and the procedure begins anew until a certain
convergence criterium is fulfilled.

C. Parallelization issues

It is in the nature of genetic algorithms that an increase
in computational effort is often accompanied by an im-
provement in results or an acceleration of the computa-
tion. A large population allows a greater variance of pos-
sible solutions and this can lead to a faster and more ex-
tensive search in the solution space. Advantageously, par-
allel computer architectures can be used very well for this
purpose, since relatively simple parallelization strategies
are possible. One method which is easy to implement is
the island model [27], where the algorithm sketched in
Sec. III.B is applied not only to a single population of N
individuals, but to a group of populations that are con-
sidered to live on different islands. In practice the islands
are different hardware processors. In our computations
we consider a number of Ni populations, i. e. a number
of Ni processors, each group consisting of N individuals.
For Ng generations the islands are isolated and the algo-
rithms are used in an identical way on each island. The
only difference is in the sampling of random numbers.
Each island generates its own chain of random numbers
which differs from all other islands. This gives diverging
results for the best fit search results on the islands. After
Ng evolutionary steps all individuals from all islands are
evaluated together and a global ranking is established.
Then the two best individuals of the global ranking re-
place the two best individuals of each island population.
After that the computation proceeds, again with differ-
ent random numbers on each island. This minimizes the
communication between the processors and introduces a
considerable extension of variants in the global popula-
tion. This implementation is easy and has been realized
by MPI routines [28].
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D. Inclusion of plasma effects

The experimentally observed plasma effects are taken
into account by assumed electron impact dissociation
processes. Therefore, the electrons are an additional
species in the model and a fundamental part of the theo-
retical analysis. However, the electron density is hard to
determine experimentally. To find a reasonable descrip-
tion of the impact of electrons a linear relationship be-
tween the discharge power P and the electron density [e−]
is used. This means, that the number of electrons follows
a simple discharge characteristics and no saturation ef-
fects occur, where the energy of electrons might be fed
into other reaction channels for higher electron energies.
Such modifications would be possible by introduction of
additional model parameters to describe a more complex
relation between ne and P , but this will be analysed in
future studies.
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FIG. 1 Resulting distribution of numerically obtained points
vs experimental data points.

IV. RESULTS

A. Numerical setup for a reference case

As mentioned in Sec. II and Sec. III.A, our numeri-
cal study considers a number of 269 experimental data
points, representing densities of CH4, CO, CO2 and H2O
at different times, plasma power and feed gas admixture.
The numerical regression model is based on an assumed
network with Ns=9 species and Nr=42 reactions. For
the genetic algorithms a number ofN = 20 chromosomes,
each with M=42 genes defines the population of a single
island. The computations are performed with Ni = 8
processors until no significant change in the globally best
fitness is detected. The number of 20 chromosomes used
in the computations is just a compromise between ac-
ceptable computational effort (low N) and quality of pa-

rameter space exploration (high N). After several nu-
merical tests it was found that N > 20 does not change
the results anymore, i. e. the best fit quality could not
be increased. During the computation the islands com-
municate for the global ranking every Ng=100 iterations
(generations). The probabilities for crossover and muta-
tion are chosen as pc = 0.6 and pm = 0.9. The upper
and lower bounds for the model parameters yi,j are cho-
sen as Lj = −15 and Hj = 5 for all i = 1, . . . , N and
j = 1, . . . ,M . Therefore, the rate coefficients are kept
in a range 10−15 ≤ kr ≤ 105. Here, dimensionless co-
efficients kr result from a scaling of densities and time
in the calculations. The species densities are scaled by
a reference density n0 = 6.0 · 1016 cm−3, which is equal
to the nominal value of the density [CH4] at the inlet,
and the time coordinate is scaled by the residence time
t0 = 6.92 · 10−2 s, which is of the order of the typical
residence time of the plasma in the experimental device,
where v = 0.3 m/s is the flow speed and the plasma vol-
ume has a length of about 26 mm (see Ref. [17]). This
gives values for the scaled densities and times of the or-
der 1. As a starting guess for the rate coefficients just
a small number kr = 10−5 has been used for all reac-
tions r = 1, . . . , Nr. The initial condition for the inte-
gration of the rate laws of Eq. 1, is prescribed by the
amount of CH4 and O2. All other densities are initially
set to zero. The numerical integration of the rate laws is
done with the Fortran-Routine DVODE from the pack-
age ODEPACK [29]. Prescribing all rate coefficients, the
initial conditions and the time point of observation al-
lows to obtain the values for the densities ciq in the cost
functional Eq. 8 and to evaluate the fitness of each chro-
mosome in the population. The experimental data are
weighted with wq = 1. Then one goes through all steps
of the algorithm as described in Sec. III.B. The Fig. 1
shows the distribution of numerically found data points
compared to the experimental ones. A perfect match
would lie on the straight line, but due to uncertainties in
the measurements actually this would mean overfitting.
Therefore, the regression gives a scattered distribution
close to the perfect match. To quantify the quality of the
regression the following parameters are introduced

SSR1 =
1

Nc

∑
q=1

(cq − ĉq)2

ĉ2q
(15)

SSR2 =
1

Nc

∑
q=1

(cq − ĉq)2

〈ĉ〉2
(16)

SSR3 =
1

Nc

∑
q=1

(cq − ĉq)2

〈ĉ2〉 − 〈ĉ〉2
(17)

where

〈ĉ〉 =
1

Nc

Nc∑
q=1

ĉq , 〈ĉ2〉 =
1

Nc

Nc∑
q=1

ĉ2q (18)
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FIG. 2 Results for the time traces of the observable species CH4, CO2, CO and H2O without plasma (top left) and with plasma
power 0.55 W, 4.00 W and 7.00 W (ordered from top right to bottom right). The gas mixture at the inlet was O2:CH4=2:1.
The solid lines indicate the model results obtained with the raw model with 42 reactions. The squares mark the experimental
data.

Actually they all consider just the sum of squared resid-
uals (cq − ĉ)2, but in each case a different normaliza-
tion factor is used to get dimensionless measures. Note
that 1 − SSR3 is identical with the so-called coefficient
of determination R2. The plot in Fig. 1 illustrates the
final distribution of numerical results vs experimental
data, therefore the convergence of the algorithm. The
results are shown and analysed in detail in Figs. 2 and
3. The corresponding measures for the residuals are
SSR1 = 0.16, SSR2 = 0.03 and SSR3 = 0.06. All of
these measures demonstrate a fairly good quality of the
regression to fit the data points.

B. Regression of experimental data

The results of the regression with the numerical setup
of the reference case described in Sec. IV.A and shown in

Fig. 1 are plotted again in figures Fig. 2 and Fig. 3. This
time however, as density vs time and density vs plasma
power, respectively, together with the corresponding ex-
perimental results. It is clearly visible that the regression
curves reflect the experimentally observed trends for the
temporal evolution and the power dependence relatively
well. In Fig. 4 the numerically found temporal varia-
tions of the densities of O2, O, H2 and C are shown.
Even though these densities were not accessible experi-
mentally, derived data points for the densities of H2,C
and O2 + O have been added which have been calculated
from the measured data using the assumed conservation
laws Eqs. 3, 4 and 5. It can be seen that also these in-
directly found data points are relatively well recovered
by the regression model. Of course, the results for the
densities of O2 and O are a model extrapolation and at
this point we would like to emphasize that these results
must be considered with caution as long as no further
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FIG. 3 Results for the power dependence of the concentrations of CH4, CO2, CO and H2O for different gas mixtures. The
figures are ordered from top left to bottom right. The solid lines indicate the model results obtained with the raw model with
42 reactions. The squares mark the experimental data. For H2O experimental data are available only for O2:CH4=2:1.

measurement points for O2 and O can be added. In fact,
experience has shown that other sets of rate coefficients
and reaction channels provide similarly good agreement
with the experimental observations of CH4, CO2, CO
and H2O, but quite different results for the densities of
O2, O, H2 and C. This is illustrated in Figs. 5, 6 and 7.
The results shown there are obtained with model assump-
tions different from the approach employed above. The
model underlying the results of Figs. 1-4 will be called
the “raw model”, where all 42 reactions of Tab. III.A are
used without further weighting (all wq = 1) or other con-
straints. Obviously, the raw model works reasonably well
to fit the data. However, it has been observed, that for
some different starting guesses ki,r some slight conver-
sion can take place in the absence of plasma (top left
figure in Fig. 2). It is assumed that this is not really re-
flecting the experiments, even though a detailed proof is
missing. Therefore, an additional information is taken
into account: The model should not show any CH4-

conversion if no plasma is present. As a consequence,
the reactions R1, R8, R9 and R10 of Tab. III.A should
be discarded, i. e. k1 = k8 = k9 = k10 = 0. Accord-
ing to the experimental trends it is also assumed that
even for high plasma powers a finite amount of CO2, CO
and H2O still remains. This requires that the processes
R36, R37, R38, R39 and R41 of Tab. III.A are not in-
volved, i. e. k36 = k37 = k38 = k39 = k41 = 0. This
reduces the number of possible reactions in the model
to Nr = 32. We will call this set of reactions the “con-
strained model”, even though it is just an assumption of
expected trends. At this point we would like to note that
the numerical algorithm also yields negligible rate coeffi-
cients for the corresponding processes, if the weights for
the data points corresponding to plasma power P = 0
are increased to w = 20 and additional (fictitious) points
are inserted for the densities of CO2, CO and H2O at
a power P > 8W. This means that the algorithm was
able to identify these insignificant reactions as such, if an
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FIG. 4 Results for the time traces of the non-observable species O2, O, H2 and C without plasma (top left) and with plasma
power 0.55 W, 4.00 W and 7.00 W (ordered from top right to bottom right). The solid lines indicate the model results obtained
with the full model with 42 reactions. The squares mark the experimental data evaluated using the assumed conservation laws
Eqs. 3, 4 and 5.

appropriate constraint is taken into account. In addition
to this and to demonstrate how additional data points
which remove some uncertainties in the densities of O2
and O comply with the observed data we combine the
constrained model with a specification of fictitious data
points, defining a mixture O2:O for a time t = t∗ � t0.
The parameter t∗ is chosen to represent a point in time,
when a stationary equilibrium is expected according to
previous observations. The parameter α is introduced to
prescibe the densities according to the following relations
which are a consequence of the conservation law Eq. 5

[O]∗ = α (S0 − 2[CO2]∗ − [CO]∗ − [H2O]∗) (19)

[O2]∗ =
1− α

2
(S0 − 2[CO2]∗ − [CO]∗ − [H2O]∗) (20)

where 0 ≤ α ≤ 1 and

S0 = 2[O2]0 + [O]0 + 2[CO2]0 − [CO]0 − [H2O]0 (21)

The indices 0 and ∗ label the densities at time t = 0
(initial conditions in the experiment) and time t = t∗,
respectively. The parameter α is set to either 0 or 1.
These values represent the two limiting cases, in which
either [O]∗ disappears and [O2]∗ fulfills the mass balance
(α = 0), or [O2]∗ disappears and [O]∗ is constrained by
the mass balance (α = 1). We call these models the
α=0-model and the α=1-model, respectively. Finally, a
fourth model is considered which consists of only 6 reac-
tions, which are labeled by the symbol F in Tab. III.A.
This model was not the result of a systematic consider-
ation, but arose from the attempt to use only reactions
whose reaction rates are known from the literature. We
call this the “minimal model”. The plots in Fig. 5 show
exemplary results for the temporal evolution of the ob-
servable densities for a power of P = 4.00W. For all the
four alternative models the fit curves match fairly well the
data points. This is confirmed by Fig. 6, where the entire
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FIG. 5 Results for the time traces of the observable species CH4, CO2, CO and H2O with plasma power 4.00 W for four
model variants. Top left: constrained model, top right: α = 0-model, bottom left: α = 1-model, bottom right: minimal model.
The solid lines indicate the model results and the squares mark the experimental data. The gas mixture at the inlet was
O2:CH4=2:1.

set of fit results are compared to the experimental data.
The corresponding error quality measures SSR1, SSR2

and SSR3 are given in the caption and show similar val-
ues as for the raw model regression. Although differences
in regression quality can be seen in individual species,
the overall quality remains similar. The same quality is
found for plots similar to those shown in Figs. 2–4 for the
other time series and plasma power scans. However, con-
sidering the extrapolated results for the non-observable
quantities shown in the plots of Fig. 7, large differences
between the models become visible. One can conclude,
that, depending on the concrete structure of the assumed
reaction kinetic model a variety of different solutions can
result, which fulfill the requirement of fitting CH4, CO2,
CO and H2O similarly good. In the same way the sum
of densities of O2 and O shows only small variations On
the other hand, the ratio O2:O depends very sensitively
on the model and on numerical details and also the con-

crete values for the rate coefficients can differ by orders of
magnitude depending on the specifics of the calculation.
As far as possible a comparison of rate coefficients from
our numerical calculations and literature values is under-
taken in Tab. IV.C and in the discussion in Sec. IV.D. In
fact, when applying genetic algorithms, one generally has
the problem of determining the optimum of possible so-
lutions and their quality. In the case considered here, the
problem seems most likely to be in the fact that the solu-
tion space is only insufficiently constrained. In the end,
the useful results only reflect that the proposed model
networks fulfill conservation laws Eqs. 3, 4 and 5 which
fit the experimental data. The conservation laws intro-
duce a constraint on the densities of H2 (Eq. 3), on C
(Eq. 4) and on the sum 2O2+O (Eq. 4), but not on O2
and O separately. According to this general argumenta-
tion, also the differences in the models can be explained
for points in time far outside the experimentally observ-
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FIG. 6 Distribution of numerically obtained points vs experimental data points for four different model variants. Top left:
constrained model, top right: α = 0-model, bottom left: α = 1-model, bottom right: minimal model. Refering to the same
order, the corresponding values for the regression measures are SSR1 = 0.14, 0.27, 0.18, 0.11, SSR2 = 0.04, 0.04, 0.03, 0.04
and SSR3 = 0.06, 0.08, 0.06, 0.08, respectively.

able time series and for very fast processes, which cannot
be resolved by experimental data. The findings up to
now can be summarized as follows:

• Satisfactory approximation of the experimental
trends was found using a raw model with 9 species
and 42 reactions and no additional information or
assumption used as constraint.

• The assumption that the plasma effects are de-
scribed by a linear relation of electron density and
plasma power and reactions including electron im-
pact dissociation works very well to take into ac-
count the dependence of species densities on plasma
power.

• The method provides good results for an interpola-
tion in the experimentally investigated parameter
range , i.e. for times t < t0, for a plasma power

0W ≤ P < 8W, initial admixtures CH4:O2 of 1:2,
1:1, 2:1 and 4:1 and for the species CH4, CO2, CO
and H2O.

• The good agreement of the experimental data with
the regression model suggests that the conservation
laws the model implies are valid, i. e. Eqs. 2 – 5 de-
scribe the experimental situation well. This result
is probably due to the fact that a high helium di-
lution was used in the experiments and thus the
number of species remained small.

• Such good interpolation results are also compat-
ible with certain constraints imposed on species
that cannot be observed or for data points beyond
the experimental limit. This is demonstrated by
numerical analysis of four alternative models (the
constrained model, the α=0- and α=1-model and
the minimal model), which gives good regression
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FIG. 7 Results for the time traces of the non-observable species O2, O, H2 and C with plasma power 4.00 W for four model
variants. Top left: constrained model, top right: α = 0-model, bottom left: α = 1-model, bottom right: minimal model. The
solid lines indicate the model results and the squares mark the experimental data evaluated using the assumed conservation
laws Eqs. 3, 4 and 5.

for the experimental data too.

• One can notice a sensitive dependence on numeri-
cal details when trying to determine the time de-
pendence of the species [O2] and [O], which cannot
be observed. This can be explained by the con-
servation law Eq. 5, because the model provides a
condition for the sum 2[O2] + [O], but not for its
individual parts.

• The lack of suitable constraints for improving the
unambiguity of the model results is also reflected in
the found number of relevant reaction mechanisms
and their rate coefficients. A wide range of reaction
networks and associated rate coefficients are com-
patible with a good regression of the experimental
data.

• However, the genetic algorithm offers the possibil-
ity to consider additional experimental data and
constraints in a very simple and flexible way.

In order to advance the modelling and to derive reliable
rate coefficients, further a priori information should be
included. In the ideal case detailed time traces of all
species of a proposed model can be observed. However,
before we get there, we want to emphasize the successful
application of the presented algorithm and discuss the
results of the model discovery in more detail.

C. Lower limit of O2-depletion

Even though the extrapolation to densities of O2 and
O separately is uncertain, the good interpolation of the
density of the sum 2O2 +O can be used to derive a lower
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limit for the conversion of O2. For this purpose coeffi-
cients for O2-depletion are introduced as

Γtrue = 1− [O2]

[O2]0
(22)

Γmin = 1− 2[O2] + [O]

2[O2]0
= Γtrue −

[O]

2[O2]0
(23)

The coefficient Γtrue is actually the quantitiy of interest,
which tells us the amount of molecular oxygen, reduced
by the conversion process. For complete depletion one
finds Γtrue = 1, whereas Γtrue = 0 if no O2 has been lost
by production of CO2, CO and H2O. Due to the lack of
knowledge of [O2] the true depletion is not known. But
one can give a lower bound for the depletion efficiency by
Γmin, because Γtrue is always larger than Γmin. This co-
efficient is plotted in Fig. 8 as a function of plasma power
and initial admixture ration [O2]0/[CH4]0. It can be seen
that a complete depletion can be expected for a plasma
power almost proportional to the square of mixing ra-
tio, i. e. , the higher the initial content of O2, the more
plasma power is needed to ensure reliable reduction.
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FIG. 8 Numerical values for the conversion coefficient Γmin

for the raw model as a function of plasma power and initial
admixture ration [O2]0/[CH4]0.

D. Characteristics of the minimal model

The very surprising success of the minimal model gives
reason to have a closer look on the implications of this
good regression result. First we want to compare the
coefficients with values from the literature. The table
Tab. IV.C lists those reactions for which numerical val-
ues could be found in the NIST database [30]. They

are compared with the results of the regression with the
raw model and the minimal model. One recognizes that
the raw model reflects the negligibility of some reactions
quite well and recognizes some essential processes as such.
The minimal model, however, does not show this. The
numerical values are far away from the literature values.
From this it can be concluded that the raw model is quite
capable of identifying important reaction channels, but
that the minimal model should only be understood as
a fit model with effective rate coefficients. The reaction
channels in this very simple network should be under-
stood as effective overall reactions. On the other hand,
the simplicity of the minimal model allows an analytical
treatment of the steady state. Inspection of the corre-
sponding rate laws gives two possibilities for stationary
densities:
The first solution is given

[CH4] = 0 , [CO2] = 0 , [CO] = 0 ,

[H2O] = Z1 − [H2] , [O2] = 0 ,

[O] = Z3 − Z1 + [H2] , [C] = Z2

(24)

and a second solution is

[CH4] = 0 , [CO2] =
k21 [CO] (Z3 − [CO])

2k21 [CO] + k4
,

[H2O] = 0 , [O2] = 0 , [H2] = Z1

[O] =
k4 (Z3 − [CO])

2k21 [CO] + k4
, [C] = Z2 − [CO]− [CO2]

(25)

If one assumes that only CH4 and O2 are present at t = 0
– like in the experiment – the constants Z1, Z2 and Z3

are

Z1 = 2[CH4]0 , Z2 = [CH4]0 , Z3 = 2[O2]0 (26)

Both solutions show a complete conversion of CH4 and
O2. In the first case, the entire initial content of car-
bon has been transferred to C and the densities of CO2
and CO are zero. In the second case the possibility of fi-
nite CO2 and CO densities remains, but H2O disappears
completely. However, the first solution can be excluded,
because if CH4 and O2 have already disappeared, there
is no channel to transfer carbon from CO2 and CO to
C. Thus, any carbon present when CH4 approaches zero
remains in the species CO2 and CO and there is no pro-
cess, which can decompose CO2 and CO together and
thus pushing both densities to zero. The composition of
the gas in the stationary state depends only on the ini-
tial values [CH4]0 and [O2]0 and the ratio k4/k21, which
might be expressed by measurable quantities of the final
state

k4
k21

=
2[O2]0 − [CO]− 2[CO2]

[CO2]
[CO] (27)
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Reaction Regression Model Literature Third Body Conversion Factor Reference
raw minimal

CO2 −−→ O+CO 4.26·10−8 2.76·10−1 4.51·10−57 × 1.45·10−18 cm3 s−1 [31]
CO −−→ O+C 1.31·10−13 8.62·10−175 × 1.45·10−18 cm3 s−1 [32]
O +CO −−→ CO2 6.88·10−4 4.10·10−1 4.45·10−1 × 2.41·10−35 cm6 s−1 [33]
O +O −−→ O2 4.14·10−1 4.46·10+1 × 2.41·10−35 cm6 s−1 [33]
O +CO2 −−→ O2 +CO 6.38·10−7 3.18·10−34 2.41·10−16 cm3 s−1 [33]
O2 +CO −−→ O+CO2 5.93·10−12 1.53·10−31 2.41·10−16 cm3 s−1 [33]
O2 +C −−→ O+CO 1.16·100 6.03·10+1 9.73·10+2 2.41·10−16 cm3 s−1 [34]
O2 +H2 −−→ O+H2O 7.41·10−1 5.46·10−1 3.35·10−47 2.41·10−16 cm3 s−1 [35]
O +H2O −−→ O2 +H2 3.22·10−14 9.15·10−47 2.41·10−16 cm3 s−1 [35]

TABLE II Comparison of regression results for the scaled rate coefficients with corresponding scaled values from the NIST
data base [30]. The symbol × labels reactions with a third body involved. To compute the corresponding rate coefficients
a He-density of 1.0 · 1019 cm−3 and a gas temperature of T = 298 K is assumed. The rate coefficients in physical units are
recovered by multiplication with the conversion factors. The last column gives the references provided by the NIST data base.

V. CONCLUSION AND NEXT STEPS

What was found in the previous sections? Consider-
ing the aspect of finding a suitable regression model able
to interpolate the experimental data, it was shown that
the genetic algorithm presented is capable of identify-
ing simple and small models. For different assumptions
about reaction channels, reactants and products, rate co-
efficients could be determined that allow to describe the
experimental data very well. Moreover, irrelevant reac-
tion mechanisms could be identified, thus providing an
indication for a further reduction of the models.

However, if one considers the concrete physical pro-
cesses underlying the model assumptions, it becomes ap-
parent that the numerical method is not able to identify
whether a reaction is physically meaningful. This has led
to calculated rate coefficients sometimes differing con-
siderably from known literature values (see Tab. IV.C,
where a few rate coefficients match quite well and others
deviate strongly). Also, various well-functioning models
sometimes contradicted each other considerably. An ex-
treme example of this is the minimal model, which gets
by with a very small number of reactions and neglects
mechanisms that are relevant in other useful regression
models. It should be noted here that Ref. [17] also dis-
cusses a useful regression model that differs significantly
from those presented here. However, in our data driven
approach, the choice of the rate coefficients and their ab-
solute values is in the first order unimportant as along as
the model reproduces the data and allows some extrap-
olation. The comparison of individual rate coefficients
with literature values may then serve as an indicator for
open points in the model, whether further reaction mech-
anisms should be invoked in the future. At the moment
the data do not enforce us to that.

Nevertheless, the results for the H2 densities in Figs.4
and 7, for example, are not very satisfactory. The ac-
cumulation of H2 is not very likely in an oxidizing en-
vironment. A way out of this inadequacy, for example,

would be to consider hydroxyl OH as another reactive
species. Various studies have already shown that there
are many indications that OH plays an important role in
the conversion of CH4 [23–25] and must also be consid-
ered as an important channel for the production of CO2
via the reaction pathway OH + CO −−→ H + CO2 [36].
Indeed, it would have been easy to include other species
like OH in the models and look at other reaction path-
ways. But this route would only have introduced more
unknowns into the models that would have to be clarified
by experimental data, i.e., the problem of extrapolation
to non-measurable quantities discussed in the previous
sections would have become even greater.

At this point, it is important to remember, that the
fundamental difference between a detailed forward cal-
culation and the model discovery algorithm is that in the
former case the rate coefficients and the reaction chan-
nels are specified, while in the latter only the reaction
channels are provided, and the algorithm looks for an
optimal solution of how these channels could be used by
the reaction network to reproduce the experimental data.
Physical laws can help by constraining the rate coeffi-
cients. But an educated guess about the basic reaction
mechanisms is essential if one wants to build a realistic
model that goes beyond the regression of a few measured
data.

Now what is the best way to use such a method? It
could be used to extend a model step by step as new
experimental data become known. The flexibility of the
numerical method makes it quick and easy to "try out"
additional effects that could serve as explanations with-
out having to calculate or guess rate coefficients. In addi-
tion, competing effects could be added to existing models
to investigate which reaction dominates a process, or un-
der what conditions, a reaction becomes irrelevant. An
important application is also in the identification of the
relevant experimental domains to compare different mod-
els. For the CH4 conversion discussed here, a few mea-
surements of atomic or molecular oxygen would already
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be sufficient to exclude some of the presented models as
unrealistic. Likewise, the measurement of H2 would pro-
vide information on whether, for example, a species such
as the hydroxyl OH is necessary to explain the experi-
ments. In addition, a refined evaluation of the results
from the genetic algorithm opens up the possibility of
learning more about the significance and correlation of
individual reactions. However, these refined methods are
being developed at the moment and will be presented in
a later paper. In this work, we have limited ourselves
to presenting the basic framework for this type of study,
which will be used further on for the analysis of plasma-
assisted processes.

VI. SUMMARY

In this work a reaction kinetic analysis of experiments
on the plasma conversion of CH4:O2:He gas mixtures in
RF discharges was carried out. The aim was to for-
mulate a model as simple as possible with few species
and reaction channels, which allows the representation
of experimental findings with only a few model parame-
ters. Furthermore, the model should be flexible enough
to consider future experimental findings and other infor-
mation (or assumptions) about the underlying processes.
To cope with both purposes, genetic algorithms prove
to be useful tools that allow not only the calculation of
model parameters but also the classification and compari-
son of different models. For the particular problem in the
context of the plasma-assisted processes in RF plasma
discharges considered here, a genetic algorithm has been
developed and implemented. The details of the numeri-
cal structure and practical application were presented in
detail. By considering a fairly extensive model based on
42 reactions and including the simplifying assumption
for the plasma effects, that only a few electron impact
dissociation processes are relevant, a fairly good match
with the available experimental data has been obtained.
This can serve as a basic framework for an analysis of
further models which can be derived from it. Some ex-
amples of model reductions have been presented in this
paper and have been examined and evaluated using the
genetic algorithm. All these discussed models are suit-
able to reconstruct the experimental data. However, the
predictions for species that cannot be observed and for
parameter ranges that are not supported by experimen-
tal data can differ considerably from model to model.
But this is not a fundamental problem, it only reflects
the gaps in the currently available data. As soon as new
data are added, it will be possible to use the contra-
dictory results to exclude certain models. Nevertheless,
the discussed examples show that our approach allows a
convenient numerical investigation of different model as-
sumptions within minutes or a few hours. In the sense
of the objective of reduced reaction-kinetic models, our
method allows to test different consequences of the model
assumptions in a clearly arranged way in order to verify

the predictions later in experiments. Among the model
variants for the CH4-O2-conversion presented here, the
model with only 6 reactions is particularly noteworthy,
which partly allows analytical results. This allows a very
convenient verification of the hypotheses and gives a di-
rection for further investigations. In summary, the ge-
netic algorithm presented here is a very flexible and sim-
ple method to systematically develop a reaction network
for a variety of different plasma-assisted processes. The
Fortran routines used for the simulations presented here
can be obtained from the authors upon request.
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